
J .  Fluid Mech. (1992), vol. 239, p p .  273-292 
Printed in  Great Britain 

273 

Heteroclinic bifurcations in a simple model of 
double-diffusive convection 

By E. KNOBLOCH’, M. R. E. PROCTORZ AND N. 0. WEISSZ 
Department of Physics, University of California, Berkeley, CA 94720, USA 

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 
Silver Street, Cambridge CB3 9EW, UK 

(Received 2 May 1991 and in revised form 19 November 1991) 

Two-dimensional thermosolutal convection is perhaps the simplest example of an 
idealized fluid dynamical system that displays a rich variety of dynamical behaviour 
which is amenable to investigation by a combination of analytical and numerical 
techniques. The transition to chaos found in numerical experiments can be related to 
behaviour near a multiple bifurcation of codimension three. The resulting third-order 
normal form equations provide a rational approximation to the governing partial 
differential equations and thereby confirm that temporal chaos is present in 
thermosolutal convection. The complex dynamics is associated with a heteroclinic 
orbit in phase space linking a pair of saddle-foci with eigenvalues satisfying 
Shil’nikov’s criterion. The same bifurcation structure occurs in a truncated fifth- 
order model and numerical experiments confirm that similar behaviour extends to a 
significant region of parameter space. 

1. Introduction 
In a fluid heated from below and stabilized by a composition gradient, rotation or 

a magnetic field, double-diffusive effects can lead to a rich variety of behaviour. 
Idealized thermosolutal convection has received considerable attention as the 
paradigm of a continuous fluid system where complicated dynamics arises from the 
competition between stabilizing and destabilizing mechanisms (Moore & Weiss 
1990). In the regime of interest, where the ratio T of the solute1 to the thermal 
diffusivity is small, instability sets in at an oscillatory (Hopf) bifurcation; in a 
confined system this bifurcation leads to oscillations which take the form of standing 
waves and grow in amplitude as the thermal Rayleigh number is increased. Precise 
numerical experiments on two-dimensional convection in a container with aspect 
ratio of order unity show that these oscillations may eventually become chaotic 
before giving way to stable steady convection (Knobloch et al. 19863; Moore, Weiss 
& Wilkins 19903). 

Similar behaviour is found in a truncated model in which the relevant partial 
differential equations are reduced to a set of five ordinary differential equations (Da 
Costa, Knobloch & Weiss 1981). In this system the origin of the chaos can be traced 
to a heteroclinic bifurcation. A t  this bifurcation there is an orbit in phase space that 
spirals in towards a pair of saddle-foci related by reflection symmetry. Behaviour 
then depends on the eigenvalues at these saddle-foci. Shil’nikov (1965) showed 
that. a third-order system possessing a homoclinic orbit connecting a single saddle- 
focus, with eigenvalues q, -p+io  (q,p > 0, o + 0) ,  to itself contains in addi- 
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tion an uncountable number of non-stable non-periodic orbits whenever the ratio 
6 = p / q  < 1 .  Consider now a system that depends on a control parameter A and 
suppose that the homoclinic orbit appears a t  A = A,; a t  this parameter value there 
is then a homoclinic bifurcation in which a periodic orbit is destroyed. The complex 
sequence of bifurcations that produces infinitely many orbits as A +A, was described 
by Glendinning & Sparrow (1984 ; see also Wiggins 1988). Essentially identical 
conclusions apply to heteroclinic orbits joining saddle-foci that are related by 
symmetry (Tresser 1984). I n  particular, if 6 > 1 then as A + A, the period P of a limit 
cycle tends to infinity monotonically and no chaos is present. For a < 6 < 1, A(P) 
oscillates about A, as P+ co and there may be intervals of stable chaos. If 8 < all 
orbits are unstable (though this case does not occur in a dissipative third-order 
system, for which q - 2 p  < 0). These conclusions extend to higher dimensional 
systems provided the remaining eigenvalues ri satisfy Re (Ti) 4 -p .  In the regime 
where solutions of the fifth-order system are chaotic this condition is met and 

Comparison of solutions of the model system with those of the full partial 
differential equations suggests that the Shil’nikov mechanism is responsible for the 
presence of chaos in the latter system too. The chaos in the truncated model occurs, 
however, when that system no longer provides a rational approximation to the 
partial differential equations. Our aim here is to derive (in a certain limit) another set 
of ordinary differential equations which does not suffer from that disadvantage. This 
‘canonical ’ system is of third order and also exhibits chaos caused by the Shil’nikov 
mechanism. Thus we can show that the same process occurs in the partial differential 
equations governing thermosolutal convection. 

A natural way of deriving low-order model systems is to focus on multiple 
bifurcation points in the parameter space and to obtain the normal forms for the 
dynamics near these points (Guckenheimer & Holmes 1986). Normal form equations 
provide a qualitatively accurate description of behaviour in a finite neighbourhood 
of a multiple bifurcation point. In this problem there are two bifurcations of 
codimension one, since the Hopf bifurcation is followed by a stationary bifurcation 
as the thermal Rayleigh number R, is increased. By varying both R, and the solutal 
Rayleigh number R,  it is possible to  locate the bifurcation of codimension two where 
the Hopf and pitchfork bifurcations coincide. Behaviour in the neighbourhood of this 
double bifurcation is described by second-order normal form equations (Knobloch & 
Proctor 1981 ; Coullet & Spiegel 1983). To include chaos we require a third-order 
system and so we need to introduce an additional parameter. We choose here to vary 
the aspect ratio A and examine the multiple bifurcation when A --f 0. In  the limit as 
T + O  the normal form equations reduce to the familiar Lorenz system (in a non- 
standard parameter range). Behaviour in the neighbourhood of the heteroclinic 
bifurcation is described by simpler equations (the canonical system) and there is a 
parameter range where the Shil’nikov mechanism leads to stable chaos. 

We thus have an asymptotically exact system of ordinary differential equations 
that are derived rigorously (if a little artificially) from the governing partial 
differential equations. Standard hyperbolicity arguments now show that there exists 
a small but finite region of parameter space where the bifurcation structure 
associated with the Shil’nikov mechanism is preserved and stable chaos is present. 
We expect, moreover, that the multiple bifurcation will act as an organizing centre 
for behaviour in a significant region of parameter space and that the mechanism 
responsible for the presence of chaos will therefore be robust. This expectation is 
confirmed by numerical experiments. 

+ < 8 < 1 .  
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In  the next section we introduce the fifth-order system, first obtained by Veronis 
(1965), and show that it can be reduced to the third-order Lorenz system in the limit 
as 7 + 0 .  These systems are onl; valid approximations to the original partial 
differential equations when the amplitudes of the sol&ions are small. The third-order 
system is investigated, for appropriate parameter values, in $3. There is a transition 
to chaos associated with a heteroclinic bifurcatidn a t  which Shil'nikov's condition is 
satisfied but this is typically in a regime where the third-order system is no longer a 
valid approximation to the partial differential equations. In $4 we show that in the 
limit A+O the entire behaviour of the oscillatory branch can be accurately 
represented by third-order evolution equations. In particular, behaviour near the 
heteroclinic bifurcation is described by a particularly simple third-order system, 
hereafter referred to as the canonical system, which admits chaotic solutions ; this 
system can also be derived directly as a rational .approximation to the partial 
differential equations in this limit (Proctor & Weiss 1990). Finally, in $5, we relate 
different limiting procedures that lead to asyqrptotically valid evolution equations 
and compare our results with numerical experiments on thermosolutal convection 
and with other forms of double convection. Analogous results for magnetoconvection 
are summarized in the Appendix. 

2. Truncated model systems 
We consider two-dimensional Boussinesq convection with motion confined to the 

(x,z)-plane. Distances and times are measured in terms of the layer depth and 
the corresponding thermal diffusion time, respectively. Then the stream function 
Y(x, z, t ) ,  the temperature fluctuation @(x, z, t )  and the fluctuation in solute 
concentration Z(z, 2, t )  satisfy the non-dimensional equations 

( la )  

( 1  b )  

( 1  c )  

in the region (0 < x < A ; 0 < z < l } ,  where Q is the ratio of the viscous to the thermal 
diffusivity (e.g. Knobloch et al. 1986b). For convenience we adopt the idealized 
boundary conditions 

a, V2Y+ a( Y, V2Y).= a[R, a, 8 - R, a, C+ V41yl, 

a,s+a(y,s) = a, ~+v2s, 
a, z + a( Y, 2) = a, Y +.7v2z 

y =  a;y= 8 =c= 0 on z = 0,1, ( 2 4  
IY = a; Y = a, 8 = a,z = o on . x = 0, A .  (2 b )  

( x , z ) + ( / ~ - x , ~ - z ) ,  (Y,@,C)+(Y,  -8, -Z). (3) 

The system (1)-(2) then possesses the point symmetry 

We assume that A is sufficiently small that the trivial solution Y = 8 = Z = 0 first 
becomes unstable to modes with a single roll in the box. In the neighbourhood of such 
a bifurcation we set 

Y = 2[2( 1 + A 2 ) ] ~ u ( t * )  sin (xz/A) sin xz  + O(a3), (44 

2 1 8 = "[--]: b(t*) cos 6) sin xz--c(t*) x sin 2x2 + O(a3), 
x 1 + A 2  

1 C=- [ - +2,,l:d(t*) cos 6) sinxz-;e(t*) sin2xz+O(a3), 
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where the modified time t* = [x2(1 +A2)/A2]t. These expressions contain all terms 
that appear to first and second order in a modified perturbation expansion and also 
possess the point symmetry (3). Substituting from (4) into (1) we obtain the fifth- 
order system 

u = a[-a+r,b-rsd]+O(-a5), ( 5 4  

6 = -b++(l-c)+O(-a5),  (5b)  

6 = w(-c+ab)+O(a4), ( 5 4  

where dots indicate differentiation with respect to t* (Veronis 1965; Da Costa et al. 
1981). Here the scaled Rayleigh numbers 

rT = R,/R,, rs = Rs/R,, R, = n4(1 +A2)3/A4, (6) 

w = 4A2/(1 + A 2 )  (0 < w < 4). (7) 

while the geometrical factor 

The fifth-order system obtained by neglecting terms O(a4) in (5) becomes exact in the 
limit la1 + O  (small PBclet number); for small to moderate la1 it still provides a 
qualitatively correct description of the dynamics of the full partial differential 
equations (Knobloch et al. 1986b). 

This fifth-order system can be simplified by proceeding to the limit 7 + 0 (for a 
salt-water mixture at room temperature 7 = 0.012). Let f =  7t* be a slow time and 
set 

TT = 1 + 7 T ,  rs = 7'8, a = 76, b = Tb, C = ~ ' c " ,  

where the quantities with tildes are taken to be of order unity. Then from (5b) we 
obtain 

", 

(8) 

6 = a"-76'+0(72), (9) 
where the prime denotes differentiation with respect to f. Equation (5c) decouples, 
leaving the third-order system 

a"' = (1  + A )  a"- (1 + 11) d + O(7a"), 

d' = -d+a"(i-e)+~(a"5), 

e' = ~ ( - e + 6 d ) + O ( a " ~ ) ,  

where r = a - ' ( l + a ) ( l + A ) ,  s = a - l ( l + a ) ( l + , u ) .  (11) 
In this limit the temperature is only slightly perturbed by the motion but the 
perturbations to the solute concentration are of order unity. Once again, we may 
only neglect the higher-order terms in (10 b) and (10c) if la"( 4 1 and the solutal PBclet 
number is small. In  the limit T + O  and 161 + O  we have, after suppressing tildes, the 
system 

a'= ( l+A)-a- ( l+p)d,  ( 1 2 4  

d' = - d + - a ( l - e ) ,  (12b) 

e' = a( - e + a d ) .  (12c) 

This system possesses the symmetry (a, d ,  e) + (--a, -d ,  e) and is dissipative if and 
only if A < a. 
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From (12a) and (12 b )  it follows that 

a"-Aha'+(p-A)a = ( l + p ) a e .  (13) 

Thus there is a pitchfork bifurcation from the trivial solution at A = p and a Hopf 
bifurcation a t  A = 0 for p > 0, with a multiple bifurcation at A = p = 0. It can be 
shown that the Hopf bifurcation is always supercritical and that there is a non-trivial 
steady solution in the neighbourhood of the pitchfork bifurcation which exists only 
for A < p and is always unstable. These results are valid for the full system (1)-(2) 
in the limit T -+ 0. 

The third-order system (12) has a steady solution with 

d = a + ( p - A ) / ( l + A )  ( - 1  < A < p ) .  (14) 

Thus la1 increases monotonically with decreasing A along the branch of steady 
solutions, which is asymptotic to the line A = - 1. From (6), (8) and (11) this line 
corresponds to rT = 1 or R ,  = R,, the value at  which convection sets in when 
R,  = 0. It is well-known that steady convection can occur arbitrarily close to 
R, = R, when 7 Q 1 (Proctor 1981). Indeed, a higher-order approximation shows 
that there is a turning point on the steady branch which acquires stability in a 
saddle-node bifurcation for a2 = 0 [ ( 8 / 7 ) f ] .  These stable steady solutions, which exist 
both for the partial differential equations and for the fifth-order system, lie outside 
the range of our approximations. 

Equations (12) can be cast into a more familiar form. Under the rescaling x = w b ,  
y = Fwb, z = Fe, with r" = S / T  = (1 +,LA)/( 1 + A )  and d = - (1 + A )  they are transformed 
into the Lorenz (1963) equations 

x1 = d(y-x), y/ = ?x-y-xz, 2' = -wz+xy. (15) 

Most studies of this system have focused on transitions to chaos as F is increased for 
some fixed d > 0 (Sparrow 1982). In our problem d < 0;  this case is also relevant to 
laser physics and Elgin & Molina Garza (1988) have explored behaviour as 3 is 
decreased for fixed F. Here we are interested in codimension-one bifurcations that 
appear as A is varied for fixed p (i.e. in varying rT for fixed rs). 

Equations (12) or (13) may be written in yet another form by defining 

c = (1+p)e++wa2.  (16) 

Then we can eliminate d to obtain 

a"-Aa'+(p-A)a = ac-&7a3, 

c/ = w[-c+Ku2],  

where K = % + (1 + A ) .  Furthermore, by introducing a time-dependent potential 
V ( a , f )  = Qu2+iwa4 (cf. Marzec & Spiegel 1980) we can rewrite (17) in the form 

a" -~a '  = -av/aa, f/ = - W [ f + ~ ( a 2 - a ; ) ]  (18) 

with a2 = ( p - h ) / K .  

3. Heteroclinicity and chaos 
In this section we shall investigate the Lorenz system (12) in the parameter range 

where 0 < a < 4 and p > 0. First of all we establish that the branch of oscillatory 
solutions terminates in a heteroclinic bifurcation. For p sufficiently small the 
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FIGURE 1. Unfolding diagrams for equation (20) in the neighbourhood of the multiple bifurcation 
point at  A = p = 0,  showing the lines of Hopf bifurcations ( A  = 0) ,  homoclinic bifurcations ( A  = Ah) 
and pitchfork bifurcations ( A  = p) ,  together with relevant phase portraits. 

heteroclinic orbit links two saddles, corresponding to unstable steady solutions with 
real eigenvalues. As p increases, two of these eigenvalues merge to form a complex- 
conjugate pair, with negative real part, so that the heteroclinic orbit spirals into a 
symmetrical pair of saddle-foci. When y is sufficiently large the eigenvalues at  the 
saddle-foci satisfy Shil’nikov’s condition and numerical solutions provide examples 
of complicated dynamics, including period-doubling and chaos. In  describing these 
results we need to distinguish carefully between features that appear when the third- 
order system is a valid approximation to the partial differential equations and other 
properties peculiar to the Lorenz system (which is interesting in its own right). 

The third-order system provides a correct description of the dynamics near the 
codimension-two bifurcation at  the origin in the ( A ,  y)-plane. If we introduce a small 
parameter e (0 < e < l),  together with the rescaling 

A = €2X, p = ESP,  a = €6, c = €23, t“= st (19) 
and immediately suppress the tildes then (17) simplifies to the normal form equation 

for a Bogdanov bifurcation with 2, symmetry (Knobloch & Proctor 1981 ; Coullet & 
Spiegel 1983). The oscillatory branch terminates in a heteroclinic orbit at  A = A, 
(where the eigenvalues on the steady branch are real) with 

a’ x+(2a,)-~(aE-a2),  a x&u,tanh[(+,,)~t], (21) 

where a; = p-A,. Moreover, we can combine (21) with the relation 

where the integral is taken round any periodic orbit of (20)’ to obtain the line 

2 + a  
2(1+3w) A, = P + 0 ( 4 ,  

on which the heteroclinic bifurcations occur. Figure 1 shows the locations of local and 
global bifurcations in the ( A ,  p)-plane together with the resulting phase portraits. The 
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FIGURE 2. Bifurcation diagrams for equation (17). Sketches showing the mean-square amplitude 
(a2) as a function of A along branches of steady and periodic solutions. The signs of the real parts 
of eigenvalues are indicated along the steady branches. (Parentheses denote complex pairs.) (a )  
Real eigenvalues for non-trivial steady solutions, with the heteroclinic orbit connecting a pair of 
saddlepoints, as for equation (20) ; ( b )  complex eigenvalues,with a heteroclinic connection between 
a pair of saddle-foci. 

corresponding bifurcation diagram, showing codimension-one behaviour as A is 
increased for fixed p > 0, is sketched in figure 2 (a)  ; the signs of the real parts of the 
relevant eigenvalues are indicated in the figure. 

Further away from the codimension-two point the problem is described by (17) 
and chaotic dynamics may occur. The key to its development is provided by the 
eigenvalues p along the branch of unstable steady solutions. These are given by the 
cubic equation 

p3+p2[w-h]-pm l + h - -  -2w(p-A) = 0 ;  [ z] 
near h = ,u they are real with one eigenvalue positive. Further along the steady 
branch the two negative eigenvalues become equal along the line E, shown in figure 3 
for m = !, and thereafter form a complex-conjugate pair. If the heteroclinic orbit 
forms in this region it will have a fully three-dimensional structure and the 
appearance of chaos becomes possible. If the eigenvalues are 

p = q, - p f i o  @,q > 0) 

then behaviour depends on the ratio 

8 = PI% (25) 

evaluated when the heteroclinic orbit forms. Stable chaos occurs in the neigh- 
bourhood of the global bifurcation for values of S within the range g < 6 < 1 
(Glendinning & Sparrow 1984; Wiggins 1988). The line 6 = 1 is given by 

while S = on h = m. These lines are also shown in figure 3 for m = $. The heteroclinic 
bifurcations lie on the line h = A, whose slope near the origin is given by (23); for 
p = O( 1)  its position has to be found numerically. We have computed its approximate 
position for w = Q ( A  = 4 2 ) ,  which is also shown in figure 3. The line starts in region 
I, with real eigenvalues, and then crosses into region 11, where there are complex 
eigenvalues with S > 1. Stable chaotic behaviour is expected in the neighbourhood of 
the point, at ,u x 4.62, where the line enters region 111, with + < S < 1. Finally, for 
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1 1 1 < ! 1 1 1 1 1 1 1  

0 2 4 6 8 
P 

FIGURE 3. Heteroclinic bifurcations in the (,u, A)-plane for the Lorenz system (17) with w = $. Non- 
trivial steady solutions exist to the right of the dashed line. In region I eigenvalues are real; in 
region I1 6 > 1, in region I11 t < 8 < 1 and in region IV 0 < 8 < 4. The heavy line indicates the 
computed positions of the heteroclinic bifurcation : stable chaos is expected when it lies in region 
111. 

,u sufficiently large, the line crosses into region IV with 0 < 6 < 2, where no attractors 
can exist. The bifurcation diagram corresponding to  a value of ,u such that the 
heteroclinic bifurcation lies in region 111 is sketched in figure 2(b). Note that there 
is now a transition from real to complex eigenvalues along the unstable steady 
branch. 

Numerical integration of the equations provides examples of symmetry-breaking, 
period-doubling and chaotic behaviour consistent with the Shil’nikov mechanism (cf. 
Proctor & Weiss 1990). For example, with ,u = 5.5 there is a transition from a 
symmetric (Sl)  orbit to  an asymmetric (Pi) orbit a t  h x 0.7, followed by successive 
period-doubling bifurcations that accumulate and are followed by an interval of 
chaos around h x 0.83, where 6 x 0.94. I n  this parameter range the solutions have 
an amplitude a,, x 1.6, so the Lorenz system is no longer a valid approximation to the 
original fluid dynamical problem. Similar behaviour has been found numerically for 
different choices of the parameter w in the range 0.01 < w < 4. Moreover, trajectories 
spiralling in towards saddle-foci have been illustrated by Elgin & Molina Garza 
(1988) for the case h x 2.3, ,u x 52, w = 0.5 (see also Weiss 1987). Thus there can be 
no doubt that the Shil’nikov mechanism leads to chaos in the system (12) with 

The amplitude of the chaotic oscillations decreases with decreasing w .  For 
w = 0.01 and ,u = 0.002 the heteroclinic bifurcation occurs around h = 0.0019 with 
S x 0.88 and the oscillations have an amplitude a, x 0.01. I n  this parameter range, 
where la1 < 1, we therefore expect the model system to be an accurate approximation 
to the partial differential equations. These numerical results suggest that we should 
explore behaviour for a < 1 in greater detail in order to demonstrate that the same 
mechanism leads to chaotic oscillations in the full partial differential equations. 

,u > 0. 
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4. Tall thin cells 
To proceed further analytically we need to capture more behaviour in the low- 

amplitude regime than is covered by the second-order normal form (20). Specifically, 
we want to bring the transition from real to complex eigenvalues along the steady 
branch into a range where la21 -4 1. This can be achieved by adjusting the parameters 
so as to approach the codimension-three bifurcation at A = p = w = 0. Thus we 
proceed to the limit w -+ 0. Then the interesting dynamics occurs in a regime where 
la( = O(&) 4 1 and the third-order system is indeed a valid approximation to the 
original partial differential equations. It turns out, however, that different orderings 
are appropriate at  the beginning and end of the oscillatory branch, so these regimes 
have to be considered separately and then matched together. 

4.1. Nonlinear oscillations 

For 0 < p 4 w 4 1 we recover a simplified normal form equation for the Bogdanov 
bifurcation. From (23), A, z p(1 -gw) : thus the heteroclinic bifurcation is close to the 
pitchfork bifurcation in this limit. In  order to find more interesting behaviour we 
take p = O(w) and introduce the scaling 

(27 ) 
- 1  

A =  wx, p =  wp, a =  woh, c =  wc, t = wit. 

Then, suppressing tildes as usual, we obtain from (17) the equations 

a” + (p - A )  a - ac = wha’ + O(w) ,  

c’ = W+( -c+a2)+O(w:). 

At leading order we have c = C = constant from (28 b)  and 

from (28a). Moreover there is a conserved energy 

Both E and Q evolve on the slower timescale T = mit according to 

Averaging the right-hand sides we therefore obtain 

E 3E2 E, = AQ2A2+flA2-3314 = (A-$)E+(p-A)---, 
2Q SQ2 

The fixed points of this reduced system give the periodic orbits of (28), with 

Thus the period, P = 27r/Q, of the oscillation increases monotonically from the 
Hopf bifurcation at A = 0 to the end of the oscillatory branch, in the neighbourhood 
of the pitchfork bifurcation at A = p. The amplitude A rises to a maximum A, at 
A = A,, where 

A,=+[(l+4p)i-l], A: =2p+1-(1+4p)i,  (34) 
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and then drops down towards zero as A approaches p. Along the unstable steady 
branch a2 = a: = p-A and A2 > a: a t  A = A, if p > a. Note that the oscillatory 
solution (29) is described by (33)  along almost the entire length of the oscillatory 
branch. It is only in the neighbourhood of the heteroclinic bifurcation, when 
0 < p-A = O ( a ) ,  that P+ 00 and the ordering (27) breaks down. 

4.2. The heteroclinic bifurcation 
To describe behaviour near the end of the oscillatory branch we adopt the scaling 

- 
p = wb, A =ah = a(ji-av), a = aci, c = a?, t"= mt (35) 

a"-,ua'+va = ac+O(w) ,  (36a)  

c' = - c + a 2 + O ( w ) .  (36b)  

instead of (27). Then, dropping hats and tildes, we find that (17)  reduces to the 
system 

This canonical system can also be derived directly as a rational approximation to the 
partial differential equations (1) in the limit A + 0, T + 0 (Proctor & Weiss 1990). 

The Hopf bifurcation in (17) lies outside the range of the scaling (35) but we can 
establish that equations (36)  possess oscillatory solutions which, in the limit v + 00, 

match those given by (29) and (33) .  In this limit we introduce a small parameter 
E = v-; and let 

(37)  a = v w ,  c = vc, t = v%. 1 - 1  

Then (36)  becomes, after bars have been dropped, 

i i + a ( l - c )  = epu, 

E = €(a2-c), 

where dots indicate differentiation with respect to E A t  leading order c = C ,  where 
both C and E = a2+a2(1 -c )  vary slowly, and we obtain the following averaged 
equations : 

Thus we take 
E = 2p(u2)-(a4)+C(a2), C' = ( a 2 ) - - .  (39)  

a = AsinQt, u = AQcosQt, Q = Q2 = 1-15', (40) 

whence 
E=pE--+( l -Q) - ,  3E2 E Q ' =  l -Q- - .  E 

SQ2 2Q 2Q 

The fixed points of (41) give periodic orbits of (38)  with 

We can now check that (42) is consistent with (33) ,  after taking the different 
scalings into account. Rewriting (42) in terms of the original variables in (17)  we 
obtain 

in agreement with (33)  in the limit h +p. So we have confirmed that the inner and 
outer limits in the two regions match for w < 1. This matching is illustrated in figure 
4(a) for w = 0.01, ,k = ,u/w = 0.2. Here the period P = 2z/Q is plotted against 
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A A 
FIQURE 4. The approach to heteroclinicity when w 4 1 .  (a) The period P as a function of for 
w = 0.01, ,i = 0.2. The lower curve shows the period computed from (33), while the upper curve is 
computed from (43). The mismatch diminishes as w+O. ( b )  Enlargement showing the wiggly 
approach to heteroclinicity at A % 0.192. 

= A/w. The curve emerging from the Hopf bifurcation a t  x = 0 is given by (33). The 
mismatch between the two curves is O(wi), as expected from the theory. The 
approach to heteroclinicity is magnified in figure 4 ( b ) ,  which shows the characteristic 
oscillations in P(x)  associated with the Shil'nikov mechanism. Thus we expect to find 
chaotic behaviour in this narrow region. 

4.3. C b t i c  osciklation8 
Theoretical analysis of the behaviour associated with a heteroclinic connection 
between a symmetrical pair of saddle-foci relies on reducing the flow described by 
ordinary differential equations to a one-dimensional map (Glendinning & Sparrow 
1984; Wiggins 1988). The approach to heteroclinicity depends on the eigenvalues at 
the saddle-foci. From the one-dimensional map we can predict that if there is a 
continuous transition from 6 > 1 to 6 < 1 at the heteroclinic bifurcation then there 
exists a finite parameter range where stable chaos is present. As 6 is reduced in the 
range 1 > 6 > 2 subsidiary homoclinic and heteroclinic orbits form, producing gaps 
in which no stable solutions can be found. In order to demonstrate the presence of 
chaos caused by the Shil'nikov mechanism it is therefore necessary to calculate the 
value of 6 at the heteroclinic bifurcation and to show that it passes through unity. 
How far stable chaos persists into the range where 1 > 6 > 4 depends on non-local 
behaviour which cannot readily be predicted. 

The system (36) has been discussed by Proctor & Weiss (1990). They found that 
the eigenvalues at  the heteroclinic bifurcation varied continuously and that there 
was a transition from 6 > 1 to 6 < 1 at p = 0.15, with Shil'nikov's criterion satisfied 
for p > 0.15. They also confirmed numerically that stable chaotic solutions existed 
in the neighbourhood of this bifurcation. Now equations (36) are a valid 
approximation to the partial differential equations (1) in the limit r J. 0, w J. 0 if 

and 

1 <  grs = l + O ( w )  
r2( 1 +a) ( 4 4 4  

LO FLY 239 
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1 I 1 1 1 1 I I I I I 1 1 1 -  ~ I ~ , ~ * ~ ~ ~ ~ ~ I  

i.e. s--T = O(m2), cf. (11). All of the complicated dynamics associated with the 
Shil’nikov mechanism is found within this narrowly restricted parameter range. 
Thus chaos can occur arbitrarily close to the onset of convection. 

The third-order system (36) provides a canonical description of chaotic behaviour 
associated with a heteroclinic bifurcation at  which Shil’nikov’s criterion is satisfied, 
and is therefore worth studying in its own right. Numerical integration of these 
canonical equations provides examples of period-doubling cascades, followed by 
chaos interspersed with periodic windows (Proctor & Weiss 1990). It is convenient to 
investigate behaviour by increasing p for fixed v in (36); this corresponds to 
increasing p while keeping (p-A) constant in (17). Then the Hopf bifurcation a t  
,u = 0 gives rise to a symmetric (Sl) orbit of period P such that 

Figure 5 shows P as a function of p along this branch for v = 3.08. As expected, the 
period increases as the branch wiggles towards a heteroclinic bifurcation at 
p = 0.487, where 6 = 0.646. 

Chaotic behaviour appears within bubbles on alternate wiggles of the S1 curve 
(Glendinning & Sparrow 1984; Wiggins 1988) and the first bubble is usually most 
prominent. For small v the bubble only contains a pair of secondary bifurcations a t  
which the symmetry (45) is broken, giving rise to branches of asymmetric (Pl) 
oscillations. As v is increased twin cascades of period-doubling and period-halving 
bifurcations appear and eventually lead to chaos (Knobloch & Weiss 1983). Within 
the chaotic region are windows where periodic solutions appear at saddle-node 
bifurcations and undergo their own cascades of bifurcations. As v is further increased 
the bubble opens owing to the formation of subsidiary homoclinic and heteroclinic 
orbits (Bernoff 1986). The behaviour of period-n solutions can be represented by 
plotting their mean period P = P/n. Figure 5 shows twin branches of P1 solutions 

a(t+lp)  = -a( t ) ,  c ( t + $ P )  = c ( t ) .  (45) 
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which themselves wiggle towards homoclinicity, as well as corresponding branches 
for period-doubled (P2) orbits, together with symmetric period-five (55) solutions 
which appear within a tiny window (cf. Bernoff 1986; Weiss 1987; Elgin & Molina 
Garza 1988). There are numerous other similar branches which are not illustrated in 
the figure, giving rise to a rich structure with many subsidiary bifurcations. 

5. Conclusion 
The partial differential equations (1) admit a trivial solution which loses stability 

in a Hopf bifurcation if 7 < 1 and rs > rsc = 72( 1 + c ~ ) / c r (  1-7). We have developed 
a hierarchy of low-order models to describe the behaviour of the resulting nonlinear 
oscillations. We began by substituting a truncated modal expansion into the partial 
differential equations. The simplest self-consistent nonlinear equations are then the 
fifth-order system (lo), which provides an asymptotically valid description in the 
limit )a1 Q 7 < 1 (Veronis 1965). For 7 -4 1 this system can be simplified to yield the 
third-order (Lorenz) system (12), which is valid provided la1 Q 7 4 1.  Both (10) and 
(12) are accurate in the neighbourhoods of Hopf and pitchfork bifurcations from the 
trivial solution. As well as these codimension-one bifurcations they both capture the 
bifurcation of codimension two that occurs for rs = rsc. Setting rs = rsc(l +p) ,  
rT = 1 + ( rSc/7)  (1 + A ) ,  with lpl + 1 and Ihl 4 1, we found that the pitchfork 
bifurcation is described by the normal form equation (20): then the branch of 
periodic solutions that emerges from the Hopf bifurcation a t  h = 0 terminates in a 
heteroclinic bifurcation with an orbit connecting a symmetrical pair of saddle-points 

The third-order system (12) can also be recognized as simplified normal form 
at h = hh (0 < hh < p). 

equations for a multiple bifurcation at h = p = w = 0 with the symmetry 

(a,& el+ ( -a ,  -4  4 
(Spiegel 1987 ; Proctor & Weiss 1990). Hence we expect the system to be structurally 
stable in the neighbourhood of this bifurcation. By considering tall thin cells and 
proceeding to the limit w+O we can therefore extend the variety of behaviour 
captured accurately by this system. In particular, in this limit the system remains 
a valid approximation to the partial differential equations even when the heteroclinic 
orbit connects a pair of saddle-foci. For p = O(w) most of the oscillatory branch can 
be followed by averaging the equations but a different approach is needed at its end. 
The heteroclinic bifurcation occurs close to the pitchfork bifurcation, with h = 
p[l -O(w)], and behaviour in this regime is governed by the canonical system (36), 
whose solutions exhibit chaotic behaviour. Thus chaos occurs where the system (36), 
and the systems (12) and (lo), are rational approximations to the original partial 
differential equations, showing that chaotic oscillations can be found arbitrarily close 
to the onset of convection (Proctor & Weiss 1990). Theory predicts that as the 
bifurcation parameter h approaches Ah a multiplicity of periodic and chaotic states 
is encountered through the formation of bifurcation bubbles. In addition, subsidiary 
homoclinic and heteroclinic orbits form and these themselves give rise to similar 
bifurcation structures. Yet in spite of its complexity all this structure is organized by 
and linked to the primary heteroclinic orbit. 

This route to the canonical system is not unique. Tall thin cells with w + 1 are 
described by simplified partial differential equations (Proctor & Holyer 1986). In the 
neighbourhood of the codimension-two bifurcation these equations reduce to a 
fourth-order system which yields the canonical system (36) in the limit 7 Q 1 (Proctor 

10-2 
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& Weiss 1990). An alternative set of partial differential equations is obtained by 
proceeding first to the limit 7 < 1 ; in the neighbourhood of the codimension-two 
bifurcation these reduce to the third-order system (12) from which the canonical 
system was derived. In particular, therefore, our results are independent of the order 
in which the limits T + O ,  w+O are applied (Rucklidge 1992). 

To be sure, we have only established that idealized thermosolutal convection 
leads to chaotic oscillations in a tiny corner of parameter space. Does the same 
mechanism generate chaos over a macroscopic parameter range when the aspect 
ratio A is of order unity ? Here we must rely on computation : numerical experiments 
with A = 1.4 (w GZ i) do indeed show that chaotic behaviour persists over a 
significant range (Huppert & Moore 1976; Knobloch et al. 1986b; Moore et al. 1990b). 
Moreover, the Shil’nikov mechanism persists in the third-order and fifth-order 
systems with w = O(1) (Knobloch et al. 19863). Of course these systems then possess 
chaotic solutions only in regimes where they are no longer valid approximations but 
there is strong circumstantial evidence that chaos in solutions of the partial 
differential equations is caused by the Shil’nikov mechanism too. 

We have succeeded in clarifying the connection between the fifth-order system and 
the full equations. The relationship between low-order systems and thermosolutal 
convection differs significantly from that between the Lorenz system and 
Rayleigh-BBnard convection. Although the derivation of the Lorenz equations is 
equivalent to that of the fifth-order system, two-dimensional Rayleigh-Be’nard 
convection does not display the same exotic behaviour as the Lorenz system (Moore 
& Weiss 1973 ; Curry et al. 1984). Here chaos appears at  large values of rT because the 
truncated model cannot resolve narrow boundary layers in solutions of the partial 
differential equations (Marcus 1981). In contrast, the chaotic behaviour of interest 
here occurs at  small amplitude, when such boundary layers are absent. Consequently, 
the fifth-order system preserves the essential bifurcation structure of the thermo- 
solutal problem, including both the possibility of chaotic behaviour near the 
heteroclinic bifurcation and the subsequent saddle-node bifurcation at which the 
steady branch acquires stability. This is the simplest example of a macroscopic 
system where complicated behaviour is faithfully represented by a low-order model. 
Similar behaviour has been found near a codimension- three bifurcation for the more 
elaborate problem of rotating thermosolutal convection (ArnBodo, Coullet & Spiegel 
1983; ArnBodo & Thual 1985) where solutions are described by a different third-order 
system related to the nonlinear oscillator invented by Moore & Spiegel(l966 ; Marzec 
& Spiegel 1980; see also Proctor & Weiss 1990). 

Thermosolutal convection is typical of systems with competing stabilizing and 
destabilizing forces. Thus the same approach can be applied, for instance, to 
magnetoconvection, as outlined in the Appendix. Rucklidge (1992) discusses 
convection in the presence of imposed vertical or horizontal magnetic fields in the 
limits w -+ 0 and w + 4. Although we have only discussed two-dimensional models, we 
are confident that three-dimensional convection in a suitable container will display 
qualitatively similar behaviour. Nonlinear oscillations have been studied in 
experiments on thermohaline convection (Shirtcliffe 1969) though binary fluids are 
more suited to laboratory experiments (e.g. Rehberg & Ahlers 1986). Results, are, 
however, sensitive to imposed constraints : symmetry-breaking bifurcations occur 
when the point symmetry (3) is relaxed (Moore, Weiss & Wilkins 1990a, 1991) while 
travelling waves are preferred if the no-flux lateral boundary conditions (2b) are 
replaced by periodic boundary conditions (Knobloch et al. 1986~) .  Hence experiments 
in wide boxes typically show travelling waves rather than standing waves (periodic 
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oscillations). Unfortunately the treatment followed here cannot be extended to 
include the interaction between travelling waves and standing waves in the limit 
7 4 0 as the corresponding system is degenerate. 

We thank Alastair Rucklidge for his comments and for assistance in producing 
figures 3 and 5.  We have also benefited from discussions with Paul Glendinning, 
Daniel Moore, Colin Sparrow and Edward Spiegel and with participants in the GFD 
Summer Program a t  Woods Hole Oceanographic Institution. SERC has generously 
provided a research grant, a Senior Fellowship (N. 0. W.) and a Visiting Fellowship 
(E. K.) ; E. K. was also supported by NSF/DARPA under grant DMS-8814702. 

Appendix. Magnetoconvection 
The partial differential equations governing two-dimensional Boussinesq con- 

vection in an imposed vertical magnetic field can be reduced to the truncated system 

(A l a )  

6 = -b+a(1 -c )+O(a5) ,  (A 1 b )  

t = w(-c+ab)+O(a*) ,  (A 1 4  
ci = - ~ d + + ( i - e ) + ~ ( ~ ~ ~ ~ ) ,  (A I d )  

6 = - ( 4 - ~ ) [ e + w a a d + O ( a ~ ~ - ~ ) ,  (A 1 4  

ci = a[ -a+ rT b -  f;qd{l+ (3 -  m) e} ]  + O(a5S4),  

where q is a scaled Chandrasekhar number and 5 is the ratio of the magnetic to the 
thermal diffusivity (Knobloch, Weiss & Da Costa 1981 ; Proctor & Weiss 1982). This 
fifth-order system displays a greater variety of behaviour than the corresponding 
system ( 5 )  for thermosolutal convection, owing to the extra nonlinearity in (A l a )  
introduced by the Lorentz force. We are interested in behaviour when 4 1 ,  so we 
set 

In the limit as c+ 0 and after tildes have been suppressed, (A 1 )  reduces to the third- 
order system 

a' = r"u-$[l+(3-m)e] ,  (A 3a)  

d' = - d + a ( l - e ) ,  (A 3b) 

e' = - (4 -w)e+wad .  (A 3 4  

This is a rational approximation to the full equation in the limit la1 4 1. Equations 
(A 3)  again possess the symmetry (a, d, e )  + ( -a ,  - d ,  e )  and the pitchfork bifurcation 
from the trivial solution occurs at r" = $, preceded by a Hopf bifurcation at r" = 1 for 

There is a codimension-two bifurcation with a double-zero eigenvalue at 4 = J = 1 .  
To describe behaviour in the neighbourhood of this bifurcation we introduce a 
small parameter e and set 

i j >  1. 

r " = 1 + e 2 ~ ,  d = ~ + e % p ,  f = e t ,  a = e ~ ,  d = e &  e = e 2 g .  (A 4 )  

Suppressing tildes, we then obtain the normal form equation 

a2 a'+O(e2).  (A 5 )  1 m(w2 -6, + 12) 
(4  - w)2 

m(2 - w) 
a" + (p -  A )  a + 
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Y Y 
FIQURE 6. Steady nonlinear magnetoconvection: at as a function of y = +/g for (a )  m = 1, with 

a turning point and ( b )  m = 3. The Hopf bifurcation occurs at y = g-', for ij > 1. 

The bifurcation structure changes when w = 2. For w > 2 there is subcritical 
steady convection and the oscillatory branch terminates in a heteroclinic bifurcation 
as for the thermosolutal problem. For w < 2 there are steady solutions near the 
bifurcation only for h > p and the oscillatory branch eventually terminates in a Hopf 
bifurcation from the steady branch (Knobloch & Proctor 1981 ; Proctor & Weiss 
1982; Amol'd 1983; Guckenheimer & Holmes 1986). 

The third-order system ( A 3 )  possesses a steady solution with a =  a, which 
depends only on the ratio y = F/d .  From (A 3), 

( 4 - m ) 2 ( l + w a ~ )  
'= [(4-w)+wa:l2 ' 

the steady branch emerges from the pitchfork bifurcation at y = 1 with 

cf. (A 5), and y+O as a:+ m. For w < 2, y initially increases but there is a turning 
point, corresponding to a saddle-node bifurcation, at 

2-w (4 - a ) 2  a: = - 
W ' Y=4(3-w)  

For w > 2, y decreases monotonically with increasing a:. Thus the steady branch has 
the forms shown in figure 6 and there is a degenerate bifurcation at a = 2. 

When a < 2 there may be a secondary Hopf bifurcation from the steady branch. 
This first appears a t  the Bogdanov point, as a double-zero bifurcation when r$ = 1. 
As 4 is increased the Hopf bifurcation creeps up the steady branch, until it reaches 
the saddle-node bifurcation when 

2 ( 3 - ~ )  
and F = 3 - a .  

= [ (4 -w) ]  
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FIQURE 7. Global bifurcations in magnetoconvection for .m = 1. Sketches showing behaviour for 
(a) 4 = 1.2, with a biclinic (gluing) bifurcation aa described by the normal form equation (A 5) ; ( b )  
4 = 1 .22, with a supercritical Hopf bifurcation ; (c) 4 = 1.25, with a pair of heteroclinic bifurcations ; 
( d )  4 = 1.27, where the biclinic bifurcation coincides with a heteroclinic bifurcation; (e) 4 = 1.3, 
with a homoclinic and a heteroclinic bifurcation; (f) 4 = 2, with a single oscillatory branch 
terminating in a heteroclinic bifurcation. Small open circles, large open circles and crosses denote 
homoclinic, heteroclinic and biclinic bifurcations respectively ; local bifurcations are indicated by 
filled circles. 

Here there is again a double-zero eigenvalue ; behaviour in the neighbourhood of this 
codimension-two bifurcation is described by the normal form equations for coincident 
Hopf and saddle-node bifurcations (Amol'd 1983 ; Guckenheimer & Holmes 1986). 

A full description of the evolution of the oscillatory branch involves a variety of 
global bifurcations. We have carried out a numerical investigation of behaviour with 
Q = 1 and the results are summarized in figure 7. For 4 sufficiently close to unity 
solutions follow the pattern predicted by the normal form equation (A 5) (Knobloch 
& Proctor 1981; Proctor & Weiss 1982). At d = 1.2, for example, there is an 
oscillatory branch with stable symmetric limit cycles enclosing the origin for 
1 < T < 1.303; this branch loses stability in a saddle-node bifurcation and the 
unstable oscillations undergo a biclinic (gluing) bifurcation as indicated in figure 7 (a) 
(cf. Nagata, Proctor & Weiss 1990). This is followed by a pair of unstable asymmetric 
limit cycles, which collapse on to the steady branch in a subcritical Hopf bifurcation 
at i? = 1.297. By 4 = 1.22 behaviour is affected by the upper portion of the steady 
branch and the entire oscillatory branch, including the asymmetric orbits, is stable 
up to a supercritical Hopf bifurcation at i? = 1.33, as sketched in figure 7 ( b ) .  A t  
$ = 1.23 a heteroclinic bifurcation appears on the oscillatory branch. Thereafter the 
branch splits into two segments, each of which ends in a heteroclinic bifurcation, as 
shown in figure 7(c) for 4 = 1.25. Here the branch emerging from the initial Hopf 
bifurcation at r" = 1 terminates in a heteroclinic bifurcation at  r" = 1.338; the branch 
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of asymmetric oscillations that emerges from the secondary Hopf bifurcation f i s t  
undergoes a biclinic bifurcation leading to symmetric oscillations and the segment 
terminates in a heteroclinic bifurcation a t  4 = 1.364. (Note that the order of these 
transitions may depend on the choice of w . )  

The two global bifurcations on the second segment approach each other as 4 is 
increased until there is a codimension-two point at $ = 1.27, 4 = 1.3888, with 
simultaneous biclinic and heteroclinic bifurcations, as sketched in figure 7 (d  ). From 
then on there are only asymmetric oscillations on the second segment, which 
terminates in a homoclinic bifurcation, as shown in figure 7 ( e )  for 4 = 1.3. This 
segment shrinks as is further increased and finally disappears at the codimension- 
two point when the Hopf and saddle-node bifurcations coincide. From (A9)  this 
occurs when $ = 1.7778, with 4 = 2. Behaviour near this point is consistent with the 
appropriate normal form equations. 

For 4 greater than this value, only the first segment remains, as sketched in figure 
7 (f) for $ = 2. Subsequent behaviour resembles that already found for thermosolutal 
convection. As $ increases, the heteroclinic bifurcation rises up the steady branch and 
the fixed points change from saddles to saddle-foci. A bubble structure develops, 
with symmetry-breaking and period-doubling bifurcations a t  4 = 4. Finally, the 
Shil’nikov mechanism leads to chaos when $ = 5.  

The most significant feature of these results is the appearance of a heteroclinic 
bifurcation which splits the oscillatory branch into two separate segments. Although 
the third-order system (A 3) is no longer a valid asymptotic approximation to the 
partial differential equations when this happens, we still expect the behaviour 
summarized in figure 7 to occur both in the fifth-order system (A 1) and in the partial 
differential equations themselves. The bifurcation structure is thus characteristic of 
the parameter regime in which the oscillatory instability is supercritical and the 
steady branch has the form shown in figure 7. This structure could be described by 
unfolding the degenerate bifurcation a t  w = 2 (cf. Dangelmayr, Armbruster & 
Neveling 1985; Knobloch & Proctor 1988). It is also possible to simplify (A 3) in the 
neighbourhood of the triple bifurcation a t  w = 4 but this limit is physically 
unrealistic, since rolls with smaller aspect ratios would become unstable f is t .  
Rucklidge (1992) finds more interesting behaviour for w 4 1, where the Hopf 
bifurcation a t  ,u = A is subcritical, and has also investigated the analogous problem 
with a horizontal field. 
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